MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1.

نویسندگان

  • Huquan Yin
  • Ming Hu
  • Ray Zhang
  • Zheng Shen
  • Laura Flatow
  • Min You
چکیده

Ethanol-mediated inhibition of hepatic sirtuin 1 (SIRT1) plays a crucial role in the pathogenesis of alcoholic fatty liver disease. Here, we investigated the underlying mechanisms of this inhibition by identifying a new hepatic target of ethanol action, microRNA-217 (miR-217). The role of miR-217 in the regulation of the effects of ethanol was investigated in cultured mouse AML-12 hepatocytes and in the livers of chronically ethanol-fed mice. In AML-12 hepatocytes and in mouse livers, chronic ethanol exposure drastically and specifically induced miR-217 levels and caused excess fat accumulation. Further studies revealed that overexpression of miR-217 in AML-12 cells promoted ethanol-mediated impairments of SIRT1 and SIRT1-regulated genes encoding lipogenic or fatty acid oxidation enzymes. More importantly, miR-217 impairs functions of lipin-1, a vital lipid regulator, in hepatocytes. Taken together, our novel findings suggest that miR-217 is a specific target of ethanol action in the liver and may present as a potential therapeutic target for treating human alcoholic fatty liver disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway

Ethanol-induced fat accumulation, the earliest and most common response of the liver to ethanol exposure, may be involved in the pathogenesis of liver diseases. Isoliquiritigenin (ISL), an important constituent of Glycyrrhizae Radix, is a chalcone derivative that exhibits antioxidant, anti-inflammatory, and phytoestrogenic activities. However, the effect of ISL treatment on lipid accumulation i...

متن کامل

Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease

MicroRNA-34a (miR-34a) is thought to be involved in nonalcoholic fatty liver disease (NAFLD). However, the association between altered expression of miR-34a and the pathophysiological features of NAFLD remains unclear. Here, we investigated the mechanisms by which miR-34a influences NAFLD through the PPARα-related pathway. Real-time quantitative PCR, western blotting and other assays kit were u...

متن کامل

MicroRNA-217 Promotes Angiogenesis of Human Cytomegalovirus-Infected Endothelial Cells through Downregulation of SIRT1 and FOXO3A

Human cytomegalovirus(HCMV) infection has been shown to contribute to vascular disease through the induction of angiogenesis. However, the role of microRNA in angiogenesis induced by HCMV infection remains unclear. The present study was thus designed to explore the potential effect of miR-1217 on angiogenesis and to disclose the underlying mechanism in endothelial cells. We found that HCMV infe...

متن کامل

MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade

Sirtuin 1 (SIRT1) plays a critical role in the maintenance of metabolic homeostasis and promotes fat mobilization in white adipose tissue. However, regulation of SIRT1 during adipogenesis, particularly through microRNAs, remains unclear. We observed that miR-146b expression was markedly increased during adipogenesis in 3T3-L1 cells. Differentiation of 3T3-L1 was induced by overexpression of miR...

متن کامل

MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1.

BACKGROUND Aging is a major risk factor for the development of atherosclerosis and coronary artery disease. Through a microarray approach, we have identified a microRNA (miR-217) that is progressively expressed in endothelial cells with aging. miR-217 regulates the expression of silent information regulator 1 (SirT1), a major regulator of longevity and metabolic disorders that is progressively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 13  شماره 

صفحات  -

تاریخ انتشار 2012